Résumé
Cet ouvrage introduit ses lecteurs à la découverte des réseaux bayésiens.À partir d’exemples simples, mais suffisamment complexes pour détailler les différents mécanismes en cause, les trois premiers chapitres présentent les réseaux bayésiens pour variables discrètes, variables gaussiennes et variables quelconques. Toutes les étapes de construction, de vérification des propriétés, d’estimation et d’interprétation sont illustrées par l’usage de fonctions R. Le but est de permettre aux lecteurs de reproduire la démarche pour leurs propres problématiques, en utilisant leurs propres données par simple adaptation de ce qui est présenté.Le quatrième chapitre propose un traitement concis mais rigoureux des théories mathématiques sous-jacentes couvrant la définition des réseaux bayésiens, les principaux algorithmes d’apprentissage de structure à partir de données et les requêtes d’exploration des propriétés d’un réseau estimé pour répondre à diverses questions concrètes.Le cinquième chapitre est dédié à une revue des principaux logiciels disponibles, en particulier des paquets R existant. Le sixième chapitre est le traitement en détails de deux situations réelles qu’ont abordées les auteurs dans leurs activités professionnelles, à l’aide des réseaux bayésiens. Il comprend également les principales commandes de R utilisées pour mener les calculs.Les cinq premiers chapitres comportent des exercices dont les solutions sont proposées en fin d’ouvrage. Deux annexes indépendantes sont consacrées à la théorie des graphes et aux distributions de probabilité majeures. Enfin, un glossaire des termes spécialisés employés tout au long de l’ouvrage est fourni ainsi qu’un index général, il contient en particulier les références de toutes les fonctions R invoquées.Les auteurs ont cherché à d’abord expliquer les concepts par l’intuition et l’exemple avant d’aboutir au formalisme mathématico-informatique. À la fois pratique et théorique l’ouvrage sera utile aussi bien aux chercheurs et ingénieurs qui doivent modéliser une situation incertaine ou interpréter des données où interviennent de nombreuses variables aléatoires qu’aux étudiants en mathématiques appliquées.
Auteur
Auteur(s) : Jean-Baptiste Denis
Caractéristiques
Auteur(s) : Jean-Baptiste Denis
Publication : 1 novembre 2014
Support(s) : Livre numérique eBook [PDF]
Protection(s) : Marquage social (PDF)
Taille(s) : 4,71 Mo (PDF)
Code(s) CLIL : 3052, 3056
EAN13 Livre numérique eBook [PDF] : 9782759817429
EAN13 (papier) : 9782759811984