Résumé
L’objectif de cet ouvrage est de vous expliquer les concepts fondamentaux du Deep Learning et de vous montrer, grâce à de nombreux exemples de code accessibles en ligne, comment les mettre en pratique.
La 3e édition de cet ouvrage de référence, très remaniée, tient compte des récentes avancées. Construire et entraîner de nombreuses architectures de réseaux de neurones pour classification et régression à l’aide de Keras et TensorFlow 2. Découvrir les mécanismes d’attention, les grands modèles de langage (LLM) tels que GPT-4, les réseaux antagonistes génératifs (GAN), les modèles de diffusion tels que DALL-E 2, la détection d’objets, la segmentation sémantique, etc. Explorer Keras, l’API officielle de haut niveau pour TensorFlow 2, désormais compatible également avec PyTorch et JAX. Entraîner de grands modèles à l’aide de TF Data, de l’API de stratégies de distribution, de TF Serving, de Keras Tuner, ou encore de la bibliothèque Transformers de Hugging Face. Passer à l’échelle supérieure sur la plateforme Google Vertex AI, ou déployer sur des appareils mobiles. Créer des agents d’apprentissage autonomes avec l’apprentissage par renforcement profond. Tous les exemples de code sont disponibles en ligne sous la forme de notebooks Jupyter à l’adresse suivante : https://github.com/ageron/handson-ml3
Auteur
-
Aurélien Géron est consultant en Machine Learning. Ex-Googler, il a mené l'équipe de classification des vidéos de YouTube de 2013 à 2016. Auparavant, il avait cofondé en 2001 la société de conseil Polyconseil, puis en 2002 la société Wifirst.
Il a été consultant dans de nombreux domaines : de la santé (transfusion sanguine) aux télécoms (SFR, Bolloré Telecom), en passant par la finance (JP Morgan et la Société Générale) et la défense (ministère de la Défense nationale du Canada).
Il a également enseigné en écoles d’ingénieurs.
Auteur(s) : Aurélien Géron
Caractéristiques
Auteur(s) : Aurélien Géron
Publication : 20 mars 2024
Support(s) : Livre numérique eBook [PDF]
Protection(s) : DRM (PDF)
Taille(s) : 13,5 Mo (PDF)
EAN13 Livre numérique eBook [PDF] : 9782100869893
EAN13 (papier) : 9782100847693