Résumé
Cet ouvrage, conçu pour tous ceux qui souhaitent s'initier au Deep Learning (apprentissage profond) est la traduction de la deuxième partie du best-seller américain Hands-On Machine Learning with Scikit-Learn & TensorFloW.
Le Deep Learning est récent et il évolue vite. Ce livre en présente les principales techniques : les réseaux de neurones profonds, capables de modéliser toutes sortes de données, les réseaux de convolution, capables de classifier des images, les segmenter et découvrir les objets ou personnes qui s'y trouvent, les réseaux récurrents, capables de gérer des séquences telles que des phrases, des séries temporelles, ou encore des vidéos, les Autoencoders qui peuvent découvrir toutes sortes de structures dans des données, de façon non supervisée, et enfin le Reinforcement Learning (apprentissage par renforcement) qui permet de découvrir automatiquement les meilleures actions pour effectuer une tâche (par exemple un robot qui apprend à marcher).
Ce livre présente TensorFlow, le framework de Deep Learning créé par Google. Il est accompagné de Jupyter notebooks (disponibles sur github) qui contiennent tous les exemples de code du livre, afin que le lecteur puisse facilement tester et faire tourner les programmes.
Il complète un premier livre intitulé Machine Learning avec Scikit-Learn.
Auteur
-
Aurélien Géron est consultant en Machine Learning. Ex-Googler, il a mené l'équipe de classification des vidéos de YouTube de 2013 à 2016. Auparavant, il avait cofondé en 2001 la société de conseil Polyconseil, puis en 2002 la société Wifirst.
Il a été consultant dans de nombreux domaines : de la santé (transfusion sanguine) aux télécoms (SFR, Bolloré Telecom), en passant par la finance (JP Morgan et la Société Générale) et la défense (ministère de la Défense nationale du Canada).
Il a également enseigné en écoles d’ingénieurs.
Auteur(s) : Aurélien Géron
Caractéristiques
Auteur(s) : Aurélien Géron
Publication : 22 novembre 2017
Support(s) : Livre numérique eBook [PDF]
Protection(s) : DRM (PDF)
Taille(s) : 10,1 Mo (PDF)
EAN13 Livre numérique eBook [PDF] : 9782100767472
EAN13 (papier) : 9782100759934